Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Skeletal Radiol ; 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38695875

RESUMO

PURPOSE: We wished to evaluate if an open-source artificial intelligence (AI) algorithm ( https://www.childfx.com ) could improve performance of (1) subspecialized musculoskeletal radiologists, (2) radiology residents, and (3) pediatric residents in detecting pediatric and young adult upper extremity fractures. MATERIALS AND METHODS: A set of evaluation radiographs drawn from throughout the upper extremity (elbow, hand/finger, humerus/shoulder/clavicle, wrist/forearm, and clavicle) from 240 unique patients at a single hospital was constructed (mean age 11.3 years, range 0-22 years, 37.9% female). Two fellowship-trained musculoskeletal radiologists, three radiology residents, and two pediatric residents were recruited as readers. Each reader interpreted each case initially without and then subsequently 3-4 weeks later with AI assistance and recorded if/where fracture was present. RESULTS: Access to AI significantly improved area under the receiver operator curve (AUC) of radiology residents (0.768 [0.730-0.806] without AI to 0.876 [0.845-0.908] with AI, P < 0.001) and pediatric residents (0.706 [0.659-0.753] without AI to 0.844 [0.805-0.883] with AI, P < 0.001) in identifying fracture, respectively. There was no evidence of improvement for subspecialized musculoskeletal radiology attendings in identifying fracture (AUC 0.867 [0.832-0.902] to 0.890 [0.856-0.924], P = 0.093). There was no evidence of difference between overall resident AUC with AI and subspecialist AUC without AI (resident with AI 0.863, attending without AI AUC 0.867, P = 0.856). Overall physician radiograph interpretation time was significantly lower with AI (38.9 s with AI vs. 52.1 s without AI, P = 0.030). CONCLUSION: An openly accessible AI model significantly improved radiology and pediatric resident accuracy in detecting pediatric upper extremity fractures.

2.
Med Image Anal ; 71: 102049, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33901993

RESUMO

The relatively recent reintroduction of deep learning has been a revolutionary force in the interpretation of diagnostic imaging studies. However, the technology used to acquire those images is undergoing a revolution itself at the very same time. Digital breast tomosynthesis (DBT) is one such technology, which has transformed the field of breast imaging. DBT, a form of three-dimensional mammography, is rapidly replacing the traditional two-dimensional mammograms. These parallel developments in both the acquisition and interpretation of breast images present a unique case study in how modern AI systems can be designed to adapt to new imaging methods. They also present a unique opportunity for co-development of both technologies that can better improve the validity of results and patient outcomes. In this review, we explore the ways in which deep learning can be best integrated into breast cancer screening workflows using DBT. We first explain the principles behind DBT itself and why it has become the gold standard in breast screening. We then survey the foundations of deep learning methods in diagnostic imaging, and review the current state of research into AI-based DBT interpretation. Finally, we present some of the limitations of integrating AI into clinical practice and the opportunities these present in this burgeoning field.


Assuntos
Neoplasias da Mama , Aprendizado Profundo , Mama/diagnóstico por imagem , Neoplasias da Mama/diagnóstico por imagem , Detecção Precoce de Câncer , Feminino , Humanos , Mamografia
3.
J Theor Biol ; 486: 110055, 2020 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-31647935

RESUMO

MicroRNAs are a class of short, noncoding RNAs which are essential for the coordination and timing of cell differentiation and embryonic development. However, despite their guiding role in development, microRNAs are dysregulated in many pathologies, including nearly all cases of cancer. While both development and oncogenesis can be thought of as extremes of phenotypic plasticity, they characteristically manifest on much different time scales: one taking place over a matter of weeks, the other typically requiring decades. Because microRNAs are believed to support this plasticity, a critically important question is how microRNAs affect phenotypic stability on different time scales, and what dynamical characteristics shift the balance between these two roles. To address this question, we extend a well-established mathematical model of transcriptional gene regulation to include translational regulation by microRNAs, and examine their effects on both short- and long-term gene expression predictability. Our findings show that microRNAs greatly improve short-term predictability for earlier, developmental phenotypes while causing a small decrease in long-term predictability, and that these effects are difficult to separate. In addition to providing a theoretical explanation for this seemingly duplicitous behavior, we describe some of the properties which determine the cost-benefit balance between short-term stabilization and long-term destabilization.


Assuntos
Fenômenos Bioquímicos , MicroRNAs , Diferenciação Celular , Expressão Gênica , Regulação da Expressão Gênica , MicroRNAs/genética
4.
J R Soc Interface ; 16(158): 20190437, 2019 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-31551049

RESUMO

MicroRNAs form a class of short, non-coding RNA molecules which are essential for proper development in tissue-based plants and animals. To help explain their role in gene regulation, a number of mathematical and computational studies have demonstrated the potential canalizing effects of microRNAs. However, such studies have typically focused on the effects of microRNAs on only one or a few target genes. Consequently, it remains unclear how these small-scale effects add up to the experimentally observed developmental outcomes resulting from microRNA perturbation at the whole-genome level. To answer this question, we built a general computational model of cell differentiation to study the effect of microRNAs in genome-scale gene regulatory networks. Our experiments show that in large gene regulatory networks, microRNAs can control differentiation time without significantly changing steady-state gene expression profiles. This temporal regulatory role cannot be naturally replicated using protein-based transcription factors alone. While several microRNAs have been shown to regulate differentiation time in vivo, our findings provide a new explanation of how the cumulative molecular actions of individual microRNAs influence genome-scale cellular dynamics. Taken together, these results may help explain why tissue-based organisms exclusively depend on miRNA-mediated regulation, while their more primitive counterparts do not.


Assuntos
Diferenciação Celular/fisiologia , Regulação da Expressão Gênica/fisiologia , Redes Reguladoras de Genes/fisiologia , Genoma Humano/fisiologia , MicroRNAs/biossíntese , Modelos Biológicos , Animais , Biologia Computacional , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...